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Abstract — A complete set of reliable system configuration 
parameters is a prerequisite for the holistic analysis of 
photovoltaic (PV) power production systems. However, in 
practice, it is common to have an incomplete or incorrect 
configuration on record. We propose an automatic system for 
determining basic mounting parameters using PV yield time series 
and location data. The system consists of quality control and 
inference modules, which we describe in this paper. The core 
inference module, based on solving an optimisation problem, is 
illustrated. Lastly, we demonstrate the utility of the proposed 
system with an evaluation exercise in the context of PV yield 
forecasting over a real asset portfolio. 

I. INTRODUCTION 

Reliable PV system configuration parameters are crucial for a 
multitude of applications designed to ensure optimal operation, 
proactive maintenance, and accurate performance of PV 
installations. Such applications include but are not limited to, 
robust monitoring platforms and fault detection mechanisms 
designed to diagnose system malfunctions and anomalies, 
comprehensive performance evaluation procedures for 
benchmarking and optimising system efficiency, and 
dependable energy forecasting tools for grid integration and 
energy management purposes. However, direct practical 
experience within Solargis has revealed a concerning problem: 
issues related to the accurate definition of the mounting 
configuration of PV sites are surprisingly commonplace. We 
saw cases with undefined, partial, or even complete but 
significantly inaccurate parameter sets, as also reported in [1] 
and other works. 

There are also some more subtle cases, where the proposed 
system is needed. One such case is when the system is not 
accurately represented in the provided PV configuration due to 
the technical complexity of the site. Another instance may be a 
site that is built on complicated topography. In those scenarios, 
the measured PV production behaves according to a set of 
‘effective’ configuration parameters which may be useful for 
some of the applications mentioned above. 

Recognising the need for more accurate PV system 
configuration metadata, we set out to develop a system capable 
of ensuring access to a reliable and consistent set of these 
parameters. There are existing methods described in the 
literature, e.g. [1], [2], [3], or [6], which address this need. Our 
goal was to create a solution that is directly linked to and 
validated against actual PV production measurements provided 
as a time series. More specifically, our objective was to design 
a detection system that would take as its input the geographical 

coordinates of a PV installation and a corresponding time series 
of its energy output. Upon processing this input data, the system 
would determine and return the following set of fundamental 
system configuration parameters: 

 Mounting geometry type (structural arrangement of 
the PV array, e.g. fixed-tilt or 1-axis tracking system), 

 Azimuth angle (horizontal orientation of the PV 
array, measured in degrees clockwise from true north), 

 Tilt angle (the angle at which the PV array is inclined 
relative to the horizontal plane), 

 Installed power capacity (total rated power output of 
all the PV modules in the system), 

 Relative (row or column) spacing (spacing between 
rows or columns of a PV array relative to its width; 
inverse of ground coverage ratio), 

 Rotation limits (the limits of rotational movement for 
tracking mounting types). 

II. APPROACH 

At Solargis, we developed proprietary assets that enable us to 
pursue this effort: A satellite-based solar resource model, a 
state-of-art PV simulation engine, and a modular data quality 
control pipeline for measured time series data. With these 
instruments at hand, the core idea behind the detection 
algorithm is the formulation of the optimisation problem [2], 
[3], [6]: Given a range of feasible simulated configurations, 
identify one which has the best fit to the reference (measured) 
time series. 

For this approach to work well, there is another essential 
requirement – the fitting process must be performed on valid 
and relevant data. The validity of measured data ensures the 
accuracy and reliability of the fit, preventing the models from 
fitting on erroneous or inaccurate information. Consequently, 
the complete solution is comprised of a series of distinct 
components organised into a data pipeline (Diagram 2.1). The 
separation of the solution into modular components within a 
pipeline also offers advantages in terms of maintainability, 
scalability, and the ability to adapt individual stages as needed 
without affecting the entire system. 

Diagram 2.1: Mounting configuration detection system. 
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III. METHODOLOGY 

A. Quality Control and Filtering 

In the real world, PV production data is often affected by at least 
some of the numerous possible issues that may occur in 
measured time series. These issues can come from 
environmental, technical, or systemic sources, and may include 
missing data, duplicates (redundant or repeated values), values 
exceeding physical limits, time reference and data resolution 
inconsistencies, hardware malfunction, communication 
failures, string/inverter failures, shutdowns, power clipping, 
soiling, shading, seasonal changes in ground albedo, 
curtailment due to grid constraints, and maintenance outages. 
As [1] and [4] also highlight, it is vital to ensure that the quality 
of the measured time series is controlled before feeding it into 
the more advanced inference algorithms. For this purpose, we 
developed a quality control (QC) data pipeline consisting of 
several automatic quality assessment methods, some of which 
were inspired by notions described in [5] and/or were adapted 
from QC methods intended for irradiance measurements, which 
are considered strong precedent for PV QC [1]. These are 
included as preprocessing steps in the proposed system and, 
where applicable, include checks for time reference, invalid 
values, physical limits, logger issues, static values, statistical 
outliers, inverter clipping, and shading. 

After the QC steps, the time series is additionally filtered prior 
to detection to ensure the inference is made from relevant data. 
Due to high variability during cloudy days and low solar 
elevations, fixed minimum thresholds are imposed on modelled 
clearness index (Kt as defined in [5]) and solar elevation (SE), 
such that Kt > 0.6 and SE > 5º. Similar filtering approach using 
Kt can be found in [6]. 

The importance of this step is easy to gloss over. However, in 
our experience, the removal of data points which are affected 
by unexpected and anomalous effects or likely to produce a 
short scale mismatch with modelled reference is crucial to 
ensuring the accuracy and consistency of the predictive system. 

B. Mounting Type Identification 

This module aims to use measured time series data to 
distinguish between three types of mounting geometry: fixed 
(with a single angle of tilt), 1-axis tracked, and 2-axis tracked 
mounting. Identification of mounting type is a prerequisite to 
selecting the applicable configuration parameters in the 
detection algorithm. 

For this task, two binary classification models were trained 
using a sample of 1406 sites with PV time series and confirmed 
mounting types. This number was boosted by introducing 
synthetic sites – randomly chosen locations with randomly 
assigned configuration and a corresponding simulated PVOUT 

in random granularity. This was a convenient way to diversify 
the sample across geographies and configurations. The 
classifier model input features included values drawn from the 
(pre-filtered) measured time series at chosen quantile levels and 
features relating measured production to modelled solar 
parameters (GHI, DNI, DIF). The first classifier, a Random 
Forest algorithm, uses the extracted features to determine 
whether the target is a fixed or tracked PV system. The second 
classifier, a Gradient Boosting algorithm, was similarly 
structured and trained to determine if a tracked system has a 2-
axis mounting geometry. Both models were trained to a high 
standard, with high F1-score metrics (nearing 1.0) and only a 
handful of misclassified cases. In both cases, visual inspection 
of the false predictions showed that some datasets in question 
still contained severe data quality issues despite the QC 
procedures applied. As a result, the final module combines the 
two classifiers in an ensemble and provides the capability to 
infer a PV system’s mounting type with high accuracy and 
reliability. 

C. Detection of Mounting Configuration Parameters 

Given solar resource time series at a geographic location, it is 
possible to calculate the global tilted irradiance (GTI) and 
simulate the energy yield (PVOUT) time series corresponding 
to a specific mounting configuration using a simulation engine. 
This capability extends beyond a single configuration, making 
it feasible to simulate a whole range of configurations. These 
configurations can be conceptualised as forming a 
multidimensional parameter search space. Within this space, 
each dimension corresponds to a specific configuration 
parameter (e.g. azimuth or tilt) which influences PV system 
performance. An example of a three-dimensional sub-space of 
this complex parameter search space is visualised in Fig. 3.1. 

The next step is to identify the configuration that best represents 
the measured time series. There are many well-known metrics 
suitable for assessing the similarity between two time series, 
such as RMSE, MAPE, or the Pearson Correlation Coefficient. 
However, in the context of comparing a measured time series 
to a simulation, it is expected that the measured time series 
rarely exceeds the simulation significantly, whilst potentially 
underperforming frequently due to various practical 
circumstances (system failures, shading, etc.). Therefore, an 
RMSE-like error metric ESIGN emerges, in which the positive 
and negative contributions are weighted unequally, such that 
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The weights w+ and w- are restricted such that 

𝑤ା, 𝑤ି ∈ [0,1], 𝑤ା + 𝑤ି = 1, 𝑤ା > 𝑤ି, 

so that the negative error contributions are neglected. The 
precise values of the weight parameters are determined 
empirically from the sample data. The search space is thus fully 
evaluated using the ESIGN metric against the measured series and 
minimised to find a preliminary configuration candidate. This 
is further illustrated in Fig. 3.1, which shows the interplay of 
the three key configuration parameters and their impact on the 
ESIGN metric, i.e., the similarity between simulated and 
measured, where lower ESIGN represents a closer fit. By 
systematically exploring this search space using optimisation 
techniques, it becomes possible to identify the best-fit PV 
system configuration corresponding to the measured 
production. 

IV. EVALUATION 

A. Primary evaluation 

The end-to-end mounting configuration detection system 
underwent a comprehensive evaluation using datasets from 86 
operational photovoltaic sites. These sites, representing a 

diverse group of real PV installations, feature fixed mounting 
systems with known mounting configuration parameters and 
are geographically distributed across various regions. The 
minimum eligibility criteria for each site were known tilt, 
azimuth, installed power, and at least 6 months of measured 
time series. It is important to note that the parameter metadata 
was validated to the best of our knowledge and in some cases 
included our best estimates based on available evidence. The 
evaluation set encompassed various time series sampling 
frequencies, ranging from 5-minute intervals to more 
aggregated hourly measurements, reflecting the heterogeneity 
found when working with real production datasets. 

The results of this evaluation exercise are shown in Table 4.1. 
The table summarizes the typical deviations between the 
predicted and declared parameters across the regions and in 
total. Notice that the deviations varied across regions. This was 
due to varying data quality, resolution and other factors. Sites 
closer to the equator typically employ lower tilt angles that in 
turn make the system production less sensitive to deviations in 
azimuth. 

The individual sites in the primary evaluation exercise were 
also visually inspected for fit between the measured production 

Table 4.1: Results of primary evaluation of key mounting parameters 
on 86 sites from Europe and Asia. * Installed power deviations are 
represented as a % of the reference (declared) value. 

Figure 3.1: Search space evaluated with error metric ESIGN in a sub-
space spanned by PV configuration parameters azimuth, tilt, and 
installed power capacity. 

Figure 4.1: Forecasted PV yield using declared and effective 
(estimated) mounting configuration vs reference historical yield. 



4 
 

time series and the best-fit simulation. This step was crucial as 
it confirmed our fitting was accurate and excluded uncertainty 
in the reference metadata. On most of the examined sites, we 
observed a good fit, as displayed in Fig. 4.1 where the curve of 
‘effective config’ corresponds to the best-fit simulation. 

B. Case study: Application in PV Yield Forecasting 

The quality of PV energy yield forecasts depends on the quality 
of forecasted solar irradiance (global horizontal irradiance - 
GHI) by numerical weather prediction (NWP) models, the PV 
simulation accuracy, and provided PV system configuration. 
Regardless of the quality of the NWPs and the PV simulation, 
incorrect metadata may lead to systematic deviations between 
forecasted and real PV power output. In these cases, the 
proposed detection system can help us leverage historical yields 
data to reduce the final forecast uncertainty. 

Our study compared forecast accuracy when using declared and 
estimated PV configurations on a portfolio of 24 operational PV 
installations in the central Europe region. The results, illustrated 
in Fig. 4.2, show improvement in forecast accuracy in 23 out of 
24 sites when forecasting with estimated PV configuration. 
Overall statistics for the forecasted portfolio are shown in Table 
4.2. This table aims to provide an overview of the typical size 
of deviations between declared and estimated parameters. The 
difference in median and average metrics indicates the presence 
of significant differences in a handful of sites where the 
estimated parameters deviated substantially (e.g. sites 3, 11, 12) 
from the declared and resulted in a severe reduction in forecast 
normalised mean absolute error (nMAE). The rest of the 
sites showed small-to-medium improvements except for site 
15, where the difference in nMAE was +2.2% higher compared 

to a forecast using declared settings. Since the observed 
increase is relatively small and the occurrence is not frequent, 
it is hard to conclude anything tangible from this single 
observation. There is certainly room for improvement and 
seeing more of such cases in the future can give us clues for 
optimisation. 

It could be argued that results from a single portfolio may not 
generalise to others – after all, the improvement in forecast 
accuracy is enabled by the quality of the provided metadata. 
However, what we can conclude from the example here is that 
there exist portfolios of PV power plants where the application 
of a PV configuration detection system makes a significant 
difference to the final forecast. In practice, it is therefore 
beneficial to have this predictive solution available to mitigate 
the uncertainty associated with reference metadata within the 
PV yield forecasting process. 

V. LIMITATIONS 

Typically, the PV configuration detection system relies on at 
least a year of measurements so that the nuances of annual 
seasonality at a given site are well represented in the sample. 
Since the algorithm depends on the presence of clear sky 
conditions in the sample, the ideal amount will vary based on 
site climatology and the amount of data affected by issues and 
anomalies (and their temporal distribution). Minimum data 
resolution is hourly or more granular. During our evaluation and 
testing, there were cases in which the system performed 
significantly worse when the time series was aggregated to 
hourly (compared to the original 15-minute resolution), hence 
we recommend using the highest granularity available. From 
our general experience with this system, which now includes 
both testing and production use, 15-minute granularity is 

Figure 4.2: 24 sites in central Europe showing yearly comparison of 
normalised mean absolute error (nMAE) when using declared (grey)
vs. estimated ‘best fit’ (orange) PV configuration. 

Table 4.2: Comparative statistics for using estimated vs. declared PV 
configuration metadata in the portfolio of 24 forecasted sites. 

Figure 5.1: Example of a measured time series with time-dependent 
PV configuration. 
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generally granular enough to capture most of the required 
detail. 

The configuration parameters relative spacing and tracker 
rotation limits are detected in a posterior search, allowing a 
tighter fit to the measured time series. Overall, these parameters 
are less influential than tilt, azimuth, and installed power, and it 
became apparent that their inference is sensitive to the quality 
of fit of the three mentioned. The effect of spacing and rotation 
limits manifests at lower sun elevations and other features such 
as shading also impact the prediction quality. Moreover, sites 
with reliable validation metadata including these two 
parameters were scarce, which prevented us from performing 
any extensive validation at this time. 

Moreover, in the implementation presented here, it is assumed 
that the evaluated PV system’s configuration does not change 
over time and the detection system is not able to provide 
interval-based evaluation. This could occur, for example, when 
the PV installed capacity at the site increases by connecting 
additional strings or segments. Such a scenario is illustrated in 
Fig. 5.1. In such cases, the proposed algorithm typically does 
not find a good fit to the full measured time series. Instead, we 
recommend manually (or otherwise) splitting the time series 
into multiple intervals and treating each interval as a separate 
instance of PV configuration. In such a way, the user could 
determine the time-dependent PV configuration on a piece-wise 
basis or simply focus on the latest. 

Lastly, it is important to mention the detected configuration 
represents an effective best fit with respect to the PV simulation 
engine used and pre-configured with system specifications like 
module material type and age, degradation rate, hardware loss 
coefficients, DC/AC ratio, and others. Moreover, the process of 
PV simulation employed here may not be able to perfectly 
capture the environmental or technical complexity of the real 
site, e.g. a complex site terrain or contributions from multiple 
power plant segments with different configurations. Hence, we 
have sometimes observed that, despite a good fit between 
measured and simulated time series found within our 
framework, the real physical on-site configuration still differs. 
This may or may not matter to the final user depending on their 
intended use. In applications using the best-fit PV simulation as 
a reference, e.g. monitoring and forecasting, the exact resulting 
PV configuration values (corresponding to the best fit) might 
not be that interesting if the overall reference provides a good 
representation of the real system. On the other hand, if the final 
aim is the verification of real metadata, a discrepancy between 
estimated and real metadata (despite a good fit) poses further 
questions. To reconcile, it may be necessary to review the PV 
simulation settings, and the PV system’s real physical settings, 
and to consider other factors that may not be well represented 
in the modelling. Ultimately, such reconciliation can lead to a 

better holistic understanding of the PV power production 
system’s behaviour and performance. 

 

VI. SUMMARY AND RELEVANCE 

We proposed an automatic computational system for the 
detection of PV configuration. The components of the proposed 
system were described, and its core inference module was 
explained. The detection system was evaluated both 
independently and in an applied setting using a case study in 
PV yield forecasting accuracy. In the case study, the proposed 
detection system improved forecast accuracy in most of the 
evaluated portfolio of sites. In some cases, there were dramatic 
improvements in order of tens of % of installed capacity when 
compared to a forecast conducted with declared configuration. 
The tool failed to improve forecast accuracy in only one of the 
24 test cases. 

Accurate solar power forecasts are crucial for electrical grid 
operators and PV asset managers. These forecasts enable 
proactive planning, leading to the elimination or mitigation of 
logistical challenges such as managing energy storage, 
scheduling maintenance, and ensuring sufficient power supply 
to meet demand fluctuations. Furthermore, accurate predictions 
minimize financial risks associated with energy imbalances, 
grid penalties, and inefficient resource allocation. The result is 
a more stable and reliable electrical grid. 

While numerical weather prediction (NWP) models, which 
form a primary basis for solar forecasting, are continuously 
refined and improved, the proposed solution targets one of the 
other critical factors influencing forecast accuracy - reliability 
and accuracy of PV system configuration parameters. 
Inaccuracies or inconsistencies in this metadata can introduce 
significant errors in the forecasting process, regardless of the 
level of sophistication of the NWP models employed. 

The value proposition of the PV configuration detection system 
extends beyond simply improving forecast accuracy. 
Uncovering and reconciling the effective and up-to-date 
configuration parameters provides valuable feedback to the 
source of the questionable metadata. This could include PV 
asset managers responsible for maintaining system records, 
installation companies who initially provided the data or other 
entities involved in the lifecycle management of the PV asset. 
Armed with this feedback, stakeholders can investigate the 
identified discrepancies and implement appropriate resolutions, 
such as updating their databases, correcting installation records, 
or conducting site inspections to verify the actual system 
configuration. This feedback loop creates a continuous 
improvement cycle, leading to more reliable metadata over time 
and consequently, more accurate and dependable solar power 
forecasts and system diagnostics. 
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